Abstract
Correction for machine compliance is an important step in analyzing the data obtained in many mechanical testing procedures. The difficulties associated with compliance correction, as they apply to the simple compression mode of testing, are explored in this paper. The commonly employed approach is to extend the procedure suggested in the ASTM standards for testing high modulus, single-filament materials, which implicitly assumes that the machine behaves as a linear spring with a constant compliance factor. It is shown in this paper that this approach results in different values for the machine compliance factor for different materials. The nonuniqueness of the machine compliance factor is attributed to the inherent nonlinearity of the machine compliance, i.e., the nonlinear dependence of the nonsample displacement on the applied load. Through a set of mechanical tests on a range of materials, it has been demonstrated that it is necessary to characterize this nonlinear compliance relationship for the machine to obtain accurate and consistent measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.