Abstract

This research presents a highly accurate and easy-to-implement method to characterize the complex Bloch modes propagating along optical chain waveguides with three-dimensional (3D) layered geometries and dispersive negative-epsilon material compositions. The technique combines commercial EM solver results with analytical post-processing to avoid iterative complex root estimation on the complex plane. The proposed methodology is based on the real-valued computations that yield the complex Bloch wavevector with superior accuracy even when both radiation and material losses are present. In addition, we introduce a single unit-cell technique to provide the possibility of dense meshing of 3D geometries when available computational resources are limited. To verify our results, two different plasmonic and dielectric case studies are discussed. The obtained results agree well with numerical and experimental results from the literature. Due to its generality, robustness, and high accuracy, the method is beneficial for studying a large variety of waveguide-based nanophotonic components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.