Abstract
Accurate prediction of capacity and remaining useful life (RUL) for lithium-ion batteries (LIBs) is crucial for ensuring safe and reliable operation of electric vehicles. However, the battery capacity degradation and external environmental disturbances make it still challenging to achieve this goal. In this article, an accurate capacity and RUL prediction method is proposed by combining improved particle swarm optimization (IPSO) with particle filter (PF) algorithms. First, the parameters of particle swarm optimization (PSO) algorithm are adjusted by adaptive weights to avoid the problem of local optimal solution. Subsequently, the optimal particle searched by IPSO is updated continuously by the PF algorithm to achieve a more accurate posterior estimation. Finally, the proposed IPSO-PF method is verified by two independent and public datasets of NASA and CALCE batteries. The results validate that the proposed method has high precision and generalizability in predicting the capacity and RUL of LIBs even at various charging rates and battery types.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.