Abstract
One of the essential technologies for autonomous navigation is localization. Localization is important because accurate pose estimation is required for path planning and motion control. In order to improve localization accuracy, a relative positioning method on the basis of accurate odometry is necessary. Odometry calibration methods for two wheel differential drive robots have been researched for many years. However, it is difficult to find odometry calibration methods for car-like mobile robots. In this paper, an accurate calibration method for car-like mobile robots is proposed. Experimentally measured orientation errors were used to improve the accuracy of the calibration method. There are two contributions in this paper. The first is the significant reduction of calibration errors by the use of accurate calibration equation. In the previous research, calibration equation required approximations. However, there is no approximation error in the proposed equation owing to the use of orientation errors, not positional errors. The second is the experimental convenience. The orientations can be easily measured by onboard inertial sensors. Therefore, calibration experiments can be easily carried out in both indoor and outdoor environments. The presented experimental results show that resultant performance of the proposed scheme is superior to the results of the previous research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Precision Engineering and Manufacturing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.