Abstract

We have investigated the local density of optical states (LDOS) in titania and silicon inverse opals--three-dimensional photonic crystals that have been realized experimentally. We used the H-field plane-wave expansion method to calculate the density of states and the projected LDOS, which are directly relevant for spontaneous emission dynamics and strong coupling. We present the first quantitative analysis of the frequency resolution and of the accuracy of the calculated LDOS. We have calculated the projected LDOS for many different emitter positions and orientations in inverse opals in order to supply a theoretical interpretation for recent emission experiments and as reference results for future experiments and theory by other workers. The results show that the LDOS in inverse opals strongly depends on the crystal lattice parameter as well as on the position and orientation of emitting dipoles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.