Abstract
Local coupled cluster methods were applied for the automated generation of accurate multidimensional potential energy surfaces for a set of test molecules ranging from six to nine atoms. Based on these surfaces anharmonic fundamental frequencies were computed using vibrational self-consistent field and configuration interaction methods. The computed vibrational frequencies are compared to those obtained from similar calculations using conventional coupled cluster methods and to experimental values. The results from local and conventional methods are found to be of similar accuracy and in close agreement with experimental values. In addition, an efficient parallelization of the fully automated surface generation code is presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.