Abstract

Studies that allow computing values of aqueous proton dissociation constants (pKa), gas phase proton affinities, and the free energy of solvation have been performed for six members of angiotensin-I-converting enzyme (ACE) inhibitor family (captopril, enalaprilat, imidaprilat, ramiprilat, perindoprilat, and spiraprilat). Density functional theory (DFT) calculations using PBE1PBE functional on optimized molecular geometries have been carried out to investigate the thermodynamics of gas-phase protonation. The conductor-like polarizable continuum model (CPCM) solvation method at various levels of theory was applied to calculate the free energy of solvation for the ACE inhibitors and their respective anions. The CPCM solvation calculations were performed on both gas-phase and solvent-phase optimized structures. The combination of gas-phase and solvation energies according to the thermodynamic cycle enabled us to compute accurate pKa values for the all studied molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.