Abstract
Abstract This article describes approximations to the posterior means and variances of positive functions of a real or vector-valued parameter, and to the marginal posterior densities of arbitrary (i.e., not necessarily positive) parameters. These approximations can also be used to compute approximate predictive densities. To apply the proposed method, one only needs to be able to maximize slightly modified likelihood functions and to evaluate the observed information at the maxima. Nevertheless, the resulting approximations are generally as accurate and in some cases more accurate than approximations based on third-order expansions of the likelihood and requiring the evaluation of third derivatives. The approximate marginal posterior densities behave very much like saddle-point approximations for sampling distributions. The principal regularity condition required is that the likelihood times prior be unimodal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.