Abstract
The fully developed laminar flow of Non-Newtonian fluids in ducts has broad application in engineering. The power-law viscosity model is utilized most often in the engineering literature, but it is deficient for many fluids as it does not admit limiting Newtonian viscosities at low and high shear rates. The goal of this work is to demonstrate two approximate but accurate and efficient methods for computing the pressure gradient in ducts of noncircular cross section for shear-thinning fluids following a general viscosity curve. Both methods predict the pressure gradient to better than 1% as established by full numerical solutions for ten cross-sectional shapes, a result representing an order-of-magnitude improvement over previous approximate methods. In the first method, an approach recently proposed and demonstrated to be accurate for a circular duct is shown to be equally applicable to noncircular ducts. In the second method, a widely used approach for noncircular ducts based on a generalization of the Rabinowitsch–Mooney equation is improved through an alternate evaluation of its parameters. Both methods require one-time numerical solutions of the power-law viscosity model for a duct shape of interest, and the necessary results are tabulated for the ten cross-sectional shapes analyzed. It is additionally demonstrated that the pressure-gradient error of the second method is approximately halved by simply replacing the hydraulic diameter with a viscous diameter obtained from the Hagen–Poiseuille equation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.