Abstract
Clustering images according to their acquisition devices is a well-known problem in multimedia forensics, which is typically faced by means of camera sensor pattern noise (SPN). Such an issue is challenging since SPN is a noise-like signal, hard to be estimated, and easy to be attenuated or destroyed by many factors. Moreover, the high dimensionality of SPN hinders large-scale applications. Existing approaches are typically based on the correlation among SPNs in the pixel domain, which might not be able to capture intrinsic data structure in the union of vector subspaces. In this paper, we propose an accurate clustering framework, which exploits linear dependences among SPNs in their intrinsic vector subspaces. Such dependences are encoded under sparse representations, which are obtained by solving an LASSO problem with non-negativity constraint. The proposed framework is highly accurate in a number of clusters’ estimation and image association. Moreover, our framework is scalable to the number of images and robust against double JPEG compression as well as the presence of outliers, owning big potential for real-world applications. Experimental results on Dresden and Vision database show that our proposed framework can adapt well to both medium-scale and large-scale contexts and outperforms the state-of-the-art methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Information Forensics and Security
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.