Abstract

This paper enhances a well-known dynamic portfolio management algorithm, the BGSS algorithm, proposed by Brandt et al. (Review of Financial Studies, 18(3):831–873, 2005). We equip this algorithm with the components from a recently developed method, the Stochastic Grid Bundling Method (SGBM), for calculating conditional expectations. When solving the first-order conditions for a portfolio optimum, we implement a Taylor series expansion based on a nonlinear decomposition to approximate the utility functions. In the numerical tests, we show that our algorithm is accurate and robust in approximating the optimal investment strategies, which are generated by a new benchmark approach based on the COS method (Fang and Oosterlee, in SIAM Journal of Scientific Computing, 31(2):826–848, 2008).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.