Abstract
Accurate information of soil macronutrient contents and fertilizer macronutrient contents is the precondition of precision fertilization; however, how to detect soil and fertilizer information rapidly, reliably, and inexpensively remains a great challenge. Visible and near-infrared (VIS/NIR) diffuse reflectance spectroscopy proves to be an effective tool for extensive investigation of soil and fertilizer properties. This study first collected many soil and chemical fertilizer samples and performed both spectral scanning and chemical analysis. During the correlation between the collected VIS/NIR spectra and the measured data, different spectral pretreatment, sample selection, and wavelength optimization methods were applied for improving the accuracy and robustness of the prediction models. After appropriate spectral processing and selection of representative samples, both principal component regression and genetic algorithm (GA) can adequately reduce the number of variables and pick out the characteristic variables, which not only enhanced prediction speed but also greatly improved prediction accuracy. In particular, using GA-based models, organic matter content (OMC), total N and pH value in soil and N, P, and K contents in fertilizer can all be accurately predicted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.