Abstract
Polarizabilities play significant roles in describing dispersive and inductive interactions of the atom and molecular systems. However, an accurate prediction of molecular polarizabilities from first principles is computationally prohibitive. Although physical models or statistical machine learning models have been proposed, either a lack of accurate description of local chemical environments or demanding a large number of samples for training has limited their practical applications. In this study, we combine a physically inspired dipole interaction model and an accurate neural network method for predicting the polarizability tensors of molecules. With the local chemical environment precisely described and the requirement of rotational covariance naturally fulfilled, this hybrid model is proven to give an accurate molecular polarizability prediction, essentially reducing the number of training samples. The atomic polarizabilities are physically interpretable and transferable to larger molecules unseen in the training set. This promising method may find its wide range of applications, such as spectroscopic simulations and the construction of polarizable force fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.