Abstract

Simulations involving free surfaces and fluid interfaces are important in many areas of engineering. There is, however, still a need for improved simulation methods. Recently, a new efficient geometric VOF method called isoAdvector for general polyhedral meshes was published. We investigate the interface reconstruction step of isoAdvector, and demonstrate that especially for unstructured meshes the applied isosurface based approach can lead to noisy interface orientations. We then introduce a novel computational interface reconstruction scheme based on calculation of a reconstructed distance function (RDF). By iterating over the RDF calculation and interface reconstruction, we obtain second order convergence of both the interface normal and position within cells even with a strict L∞ error norm. In 2D this is verified with reconstruction of a circle on Cartesian meshes and on unstructured triangular and polygonal prism meshes. In 3D the second order convergence is verified with reconstruction of a sphere on Cartesian meshes and on unstructured tetrahedral and polyhedral meshes. The new scheme is combined with the interface advection step of the isoAdvector algorithm. Significantly reduced absolute advection errors are obtained, and for CFL number 0.2 and below we demonstrate second order convergence on all the mentioned mesh types in 2D and 3D. The implementation of the proposed interface reconstruction schemes is straightforward and the computational cost is significantly reduced compared to contemporary methods. The schemes are implemented as an extension to the Computational Fluid Dynamics (CFD) Open Source software package, OpenFOAM®. The extension module and all test cases presented in this paper are released as open source.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call