Abstract

Using an approach based on the diffusion analog of the Cattaneo-Vernotte differential model, we find the exact analytical solution to the corresponding time-dependent linear hyperbolic initial boundary value problem, describing irreversible diffusion-controlled reactions under Smoluchowski's boundary condition on a spherical sink. By means of this solution, we extend exact analytical calculations for the time-dependent classical Smoluchowski rate coefficient to the case that includes the so-called inertial effects, occurring in the host media with finite relaxation times. We also present a brief survey of Smoluchowski's theory and its various subsequent refinements, including works devoted to the description of the short-time behavior of Brownian particles. In this paper, we managed to show that a known Rice's formula, commonly recognized earlier as an exact reaction rate coefficient for the case of hyperbolic diffusion, turned out to be only its approximation being a uniform upper bound of the exact value. Here, the obtained formula seems to be of great significance for bridging a known gap between an analytically estimated rate coefficient on the one hand and molecular dynamics simulations together with experimentally observed results for the short times regime on the other hand. A particular emphasis has been placed on the rigorous mathematical treatment and important properties of the relevant initial boundary value problems in parabolic and hyperbolic diffusion theories.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call