Abstract
High precision approximate analytic expressions of the ground state energies and wave functions for the spiked harmonic oscillator are found by first casting the correspondent Schrödinger equation into the nonlinear Riccati form and then solving that nonlinear equation analytically in the first iteration of the quasilinearization method (QLM). In the QLM the nonlinear differential equation is treated by approximating the nonlinear terms with a sequence of linear expressions. The QLM is iterative but not perturbative and gives stable solutions to nonlinear problems without depending on the existence of a smallness parameter. The choice of zero iteration is based on general features of exact solutions near the boundaries. Comparison of our approximate analytic expressions for binding energies and wave functions with the exact numerical solutions demonstrates their high accuracy in the wide range of parameters. The accuracy ranging between 10 −3 and 10 −7 for the energies and, correspondingly, 10 −2 and 10 −7 for the wave functions in the regions, where they are not extremely small is reached. The derived formulas enable one to make accurate analytical estimates of how variation of different interactions parameters affects the correspondent physical systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.