Abstract

This paper presents a theory on accurately analysing the dispersion relation and the interaction impedance of electromagnetic waves propagating through a helical groove waveguide with arbitrary groove shape, in which the complex groove profile is synthesized by a series of rectangular steps. By introducing the influence of high-order evanescent modes on the connection of any two neighbouring steps by an equivalent susceptance under a modified admittance matching condition, the assumption of the neglecting discontinuity capacitance in previously published analysis is avoided, and the accurate dispersion equation is obtained by means of a combination of field-matching method and admittance-matching technique. The validity of this theory is proved by comparison between the measurements and the numerical calculations for two kinds of helical groove waveguides with different groove shapes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.