Abstract

The gas-phase reaction Cl + NH3 → HCl + NH2 is a prototypical hydrogen abstraction reaction, whose minimum energy path involves several intermediate complexes. In this work, a full-dimensional, spin-orbit corrected potential energy surface (SOC PES) is constructed for the ground electronic state of the Cl + NH3 reaction. About 52 000 energy points are sampled and calculated at the UCCSD(T)-F12a/aug-cc-pVTZ level, in which the data points located in the entrance channel are spin-orbit corrected. The spin-orbit corrections are predicted by a fitted three-dimensional energy surface from about 7520 energy points in the entrance channel at the level of CASSCF (15e, 11o)/aug-cc-pVTZ. The fundamental-invariant neural network method is utilized to fit the SOC PES, resulting in a total root mean square error of 0.12kcal mol-1. The calculated thermal rate constants of the Cl + NH3 → HCl + NH2 reaction on the SOC PES with the soft-zero-point energy constraint agree reasonably well with the available experimental values.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call