Abstract

Semiclassical transition state theory, in combination with high accuracy quantum chemistry, is used to compute thermal rate constants from first principles for the O((3)P) + H2 reaction and its isotopic counterparts. In the temperature regime of 298-3500 K (which spans 8 orders of magnitude for rate constants), our theoretical results are in excellent agreement (within 5-15%) with all available experimental data from 298 to 2500 K but are somewhat too low (from 15 to 35%) at higher temperatures. Several possible reasons that might cause the degradation at high temperatures are discussed. Vibrational state-selected rate constants and their correlations with normal thermal rate constant are derived and are given in the Supporting Information.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.