Abstract

AbstractIntermolecular interaction potentials of the methane dimers have been calculated for 12 symmetric conformations using the Hartree-Fock (HF) self-consistent theory, the second-order M�ller-Plesset (MP2) perturbation theory, and the coupled-cluster with single and double and perturbative triple excitations (CCSD(T)) theory. The HF calculations yield unbound potentials largely due to the exchange-repulsion interaction. In MP2 and CCSD(T) calculations, the basis set effects on the repulsion exponent, the equilibrium bond length, the binding energy, and the asymptotic behavior of the calculated intermolecular potentials have been thoroughly studied. We have employed basis sets from the Slater-type orbitals fitted with Gaussian functions, Pople�s medium size basis sets to Dunning�s correlation consistent basis sets. With increasing basis size, the repulsion exponent and the equilibrium bond length converge at the 6-31G** basis set and the 6-311++G(2d, 2p) basis set, respectively, while a large basis set (aug-cc-pVTZ) is required to converge the binding energy at a chemical accuracy (˜0.01 kcal/mol). We used the BSSE corrected results that systematically converge to the destined potential curve with increasing basis size. The binding energy calculated and the equilibrium bond length using the CCSD(T) method are close to the results at the basis set limit. For molecular dynamics simulation, a 4-site potential model with sites located at the hydrogen atoms was used to fit the ab initio potential data. This model stems from a hydrogen-hydrogen repulsion mechanism to explain the stability of the dimer structure. MD simulations using the ab initio PES show good agreement on both the atom-wise radial distribution functions and the self-diffusion coefficients over a wide range of experimental conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.