Abstract

Deep ensemble learning has been shown to improve accuracy by training multiple neural networks and averaging their outputs. Ensemble learning has also been suggested to defend against membership inference attacks that undermine privacy. In this paper, we empirically demonstrate a trade-off between these two goals, namely accuracy and privacy (in terms of membership inference attacks), in deep ensembles. Using a wide range of datasets and model architectures, we show that the effectiveness of membership inference attacks increases when ensembling improves accuracy. We analyze the impact of various factors in deep ensembles and demonstrate the root cause of the trade-off. Then, we evaluate common defenses against membership inference attacks based on regularization and differential privacy. We show that while these defenses can mitigate the effectiveness of membership inference attacks, they simultaneously degrade ensemble accuracy. We illustrate similar trade-off in more advanced and state-of-the-art ensembling techniques, such as snapshot ensembles and diversified ensemble networks. Finally, we propose a simple yet effective defense for deep ensembles to break the trade-off and, consequently, improve the accuracy and privacy, simultaneously.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.