Abstract

There have been two thrusts in the development of optical flow algorithms. One has emphasized higher accuracy; the other faster implementation. These two thrusts, however, have been independently pursued, without addressing the accuracy vs efficiency trade-offs. Although the accuracy–efficiency characteristic is algorithm dependent, an understanding of a general pattern is crucial in evaluating an algorithm as far as real-world tasks are concerned, which often pose various performance requirements. This paper addresses many implementation issues that have often been neglected in previous research, including temporal filtering of the output stream, algorithms' flexibility, and robustness to noise, subsampling, etc. Their impacts on accuracy and/or efficiency are emphasized. We present a survey of different approaches toward the goal of higher performance and present experimental studies on accuracy vs efficiency trade-offs. A detailed analysis of how this trade-off affects algorithm design is manifested in a case study involving two state-of-the-art optical flow algorithms: a gradient and a correlation-based method. The goal of this paper is to bridge the gap between the accuracy- and the efficiency-oriented approaches.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call