Abstract

This work examines the accuracy of a parallel moving least squares algorithm for solving the governing equations of the hydrodynamic formulation of quantum mechanics. The algorithm solves the associated linear least squares problems using either normal equations or QR factorization. The accuracy of the algorithm is studied for both the free particle and the harmonic oscillator, and the results of a series of experiments designed to determine the spatial and temporal dependence of the accuracies are presented. In closing, a few qualitative observations concerning the performance of the algorithm are offered for consideration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.