Abstract

A search algorithm for the most extended landmark by which unmanned aerial vehicle can be followed by and implemented flight correction was proposed. The software was developed based on the Python language. The functionality of this software is to detect the linear landmarks from images of geophysical field, received from unmanned aerial vehicle in real time. Images were processed by Hough Line Transform method. As a result, obtained visualization of the object detection with the greatest length, as linear landmark, which allows to estimate unmanned aerial vehicle location. The visual analysis of the effectiveness of this algorithm for inertial navigation system correction shown that the algorithmic software is appropriate for use on unmanned aerial vehicle board and due to applying computer vision systems, gives as correct results of location determining as possible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.