Abstract
Several statistical models for predicting suicide risk have been developed, but how accurate such models must be to warrant implementation in clinical practice is not known. To identify threshold values of sensitivity, specificity, and positive predictive value that a suicide risk prediction method must attain to cost-effectively target a suicide risk reduction intervention to high-risk individuals. This economic evaluation incorporated published data on suicide epidemiology, the health care and societal costs of suicide, and the costs and efficacy of suicide risk reduction interventions into a novel decision analytic model. The model projected suicide-related health economic outcomes over a lifetime horizon among a population of US adults with a primary care physician. Data analysis was performed from September 19, 2019, to July 5, 2020. Two possible interventions were delivered to individuals at high predicted risk: active contact and follow-up (ACF; relative risk of suicide attempt, 0.83; annual health care cost, $96) and cognitive behavioral therapy (CBT; relative risk of suicide attempt, 0.47; annual health care cost, $1088). Fatal and nonfatal suicide attempts, quality-adjusted life-years (QALYs), health care sector costs and societal costs (in 2016 US dollars), and incremental cost-effectiveness ratios (ICERs) (with ICERs ≤$150 000 per QALY designated cost-effective). With a specificity of 95% and a sensitivity of 25%, primary care-based suicide risk prediction could reduce suicide death rates by 0.5 per 100 000 person-years (if used to target ACF) or 1.6 per 100 000 person-years (if used to target CBT) from a baseline of 15.3 per 100 000 person-years. To be cost-effective from a health care sector perspective at a specificity of 95%, a risk prediction method would need to have a sensitivity of 17.0% or greater (95% CI, 7.4%-37.3%) if used to target ACF and 35.7% or greater (95% CI, 23.1%-60.3%) if used to target CBT. To achieve cost-effectiveness, ACF required positive predictive values of 0.8% for predicting suicide attempt and 0.07% for predicting suicide death; CBT required values of 1.7% for suicide attempt and 0.2% for suicide death. These findings suggest that with sufficient accuracy, statistical suicide risk prediction models can provide good health economic value in the US. Several existing suicide risk prediction models exceed the accuracy thresholds identified in this analysis and thus may warrant pilot implementation in US health care systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.