Abstract

BackgroundThis study aimed to assess the accuracy of virtual surgical planning (VSP) in segmental osteotomy in combination with bimaxillary orthognathic surgery with surgery first approach (SFA) by means of three-dimensional (3D) measuring and superimposition, so as to promote the application of digital technology in combined orthodontic-orthognathic treatment.Methods20 patients treated with segmental osteotomy in combination with bimaxillary orthognathic surgery with SFA from 2018 to 2020 were included. All of them acquired VSP performed by ProPlan CMF 3.0 software (Materialise Corporation, Belgium). The preoperative (T0) 3D model of VSP and the postoperative (T1) 3D model, reconstructed by the cone-beam computed tomography (CBCT) data acquired one week after surgery, were compared by measuring the 3D coordinates of the landmarks as well as 3D model superimposition for deviation analysis. The deviation analysis was achieved by Geomagic Studio 2013 (3D Systems Corporation, USA). The differences which represented the accuracy of VSP were evaluated by the root mean square deviation (RMSD) and the Bland–Altman method.ResultsThere was no statistically significant difference between the 3D coordinates of T1 and T0 (P > 0.05), and the mean overall RMSD was 1.37 mm, within the clinical relevance of 2 mm. The RMSD of sagittal direction (1.76 mm) was greater than that of coronal and vertical directions (1.09 mm and 1.24 mm), and the RMSD of maxillary and mandibular aspects were basically equal (1.30 mm and 1.45 mm). The Bland–Altman method showed the T0 and T1 measurements were in good agreement. The mean RMSD obtained from the deviation analysis was 1.85 mm, within the clinical relevance.ConclusionsVSP in segmental osteotomy in combination with bimaxillary orthognathic surgery with SFA proved to acquire accurate outcome in this study.

Highlights

  • This study aimed to assess the accuracy of virtual surgical planning (VSP) in segmental osteotomy in combination with bimaxillary orthognathic surgery with surgery first approach (SFA) by means of three-dimensional (3D) measuring and superimposition, so as to promote the application of digital technology in combined orthodontic-orthognathic treatment

  • With the development of digital imaging, computer-aided design and manufacturing (CAD/CAM) and three-dimensional (3D) printing technology, preoperative virtual surgical planning (VSP), 3D printing of surgical splints and evaluation of the surgery can all be achieved by computer software [9, 10]

  • Geert Van Hemelen et al [12] found the accuracy of 3D virtual planning in hard tissue prediction was equivalent to traditional two-dimensional planning, which is better in soft tissue prediction

Read more

Summary

Introduction

This study aimed to assess the accuracy of virtual surgical planning (VSP) in segmental osteotomy in combination with bimaxillary orthognathic surgery with surgery first approach (SFA) by means of three-dimensional (3D) measuring and superimposition, so as to promote the application of digital technology in combined orthodontic-orthognathic treatment. Patients’ facial appearance can get improved in the very early stage with surgery first approach (SFA), where preoperative orthodontic treatment is removed or limited to no more than 2 months. Whether the best position of jaws and occlusal relationship can be designed and transferred accurately to the operation during surgical planning is of great significance. With the development of digital imaging, computer-aided design and manufacturing (CAD/CAM) and three-dimensional (3D) printing technology, preoperative virtual surgical planning (VSP), 3D printing of surgical splints and evaluation of the surgery can all be achieved by computer software [9, 10]. Ngoc Hieu Tran et al [15] found accurate outcome of 3D planning applied in skeletal class III cases with SFA

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call