Abstract
AbstractThe Tretyakov non‐recording precipitation gauge has been used historically as the official precipitation measurement instrument in the Russian (formerly the USSR) climatic and hydrological station network and in a number of other European countries. From 1986 to 1993, the accuracy and performance of this gauge were evaluated during the WMO Solid Precipitation Measurement Intercomparison at 11 stations in Canada, the USA, Russia, Germany, Finland, Romania and Croatia. The double fence intercomparison reference (DFIR) was the reference standard used at all the Intercomparison stations in the Intercomparison. The Intercomparison data collected at the different sites are compatible with respect to the catch ratio (measured/DFIR) for the same gauge, when compared using mean wind speed at the height of the gauge orifice during the observation period.The Intercomparison data for the Tretyakov gauge were compiled from measurements made at these WMO intercomparison sites. These data represent a variety of climates, terrains and exposures. The effects of environmental factors, such as wind speed, wind direction, type of precipitation and temperature, on gauge catch ratios were investigated. Wind speed was found to be the most important factor determining the gauge catch and air temperature had a secondary effect when precipitation was classified into snow, mixed and rain. The results of the analysis of gauge catch ratio versus wind speed and temperature on a daily time step are presented for various types of precipitation. Independent checks of the correction equations against the DFIR have been conducted at those Intercomparison stations and a good agreement (difference less than 10%) has been obtained. The use of such adjustment procedures should significantly improve the accuracy and homogeneity of gauge‐measured precipitation data over large regions of the former USSR and central Europe.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.