Abstract

This study investigates effects of surgical guide manufacturing process on 3D transfer accuracy of planned dental implant position, using three production methods: additive 3D-printed (3DF), subtractive milled (MF), and analog laboratory fabricated templates (LF). Implant position for a single-tooth gap (#26) planned digitally. 3DF and MF templates were designed digitally, while LF templates were analogously created. For each manufacturing type, 10 surgical guides were fabricated. Each guide was used for template-guided implant placement in model replicas. For evaluation of implant placement, cone beam computed tomography scans of all implanted models were superimposed, and implant positions were determined. Deviations at implant shoulder/apex were measured, and median and inter-quartile range (IQR) were determined for mesio-distal, oro-facial, coronal apico, 3D spaces, and angles. At implant shoulder, vertical components dominated position deviations (up to 1.04 mm, IQR 0.28 mm for 3DF). Horizontal deviations were much lower (mesio-distally up to 0.38 mm, IQR 0.36 mm (LF)). Implant apex shows similar vertical deviations, while horizontal deviations clearly increased compared to shoulder, especially in mesio-distal direction. Median angular deviations were between 2.1° (IQR 2.0 mm, max. 4.2°) for 3DF and 3.3° (IQR 1.9 mm, max. 5.3°) for MF. No statistical differences were found between manufacturing types (Kruskal-Wallis test, p = .05). The study showed the method of implant guide fabrication did not affect the accuracy of implant placement within the limits of an invitro environment. All methods resulted in implant placement which did not exceed the accepted safety deviation envelope (1.5-2.0 mm).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.