Abstract
In vivo T1 measurements, used to monitor the uptake of contrast agent by tissues, are typically performed as a first step in implementing compartmental analysis of contrast-enhanced breast magnetic resonance imaging (MRI) data. We have extended previously described methodology for in vivo T1 measurement (using a variable flip-angle gradient-recalled echo technique) to two-dimensional (2D), fast low-angle shot (FLASH). This approach requires computational modeling of slice-selective radiofrequency (RF) excitation to correct for nonrectangular slice profiles. The accuracy with which breast tissue T1 values can be measured by this approach is examined: T1 measurements from phantom and in vivo image data acquired with 2D and 3D FLASH imaging sequences are presented. Significant sources of error due to imaging pulse sequence quality and RF transmit field nonuniformity in the breast coil device that will have detrimental consequences for compartmental analysis are identified. Rigorous quality assurance programs with calibrated phantoms are thus recommended, to verify the accuracy with which T1 measurements are obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.