Abstract

Multi-row film cooling is widely used on both suction side and pressure side of turbine vane, and the coolant behavior is considerable for engine design. Main work of this paper is to find out the accuracy of superposition predictions. Experiments were conducted on flat plates with double rows of cooling holes. The method of stable infrared measurement technique was used to measure surface temperature. Four factors, including hole shape, hole arrangement, row-to-row spacing and blowing ratio were simulated. Numerical simulation using commercial software ANSYS Fluent was also performed to observe the flow structure and film cooling mechanisms between each row. Result showed that the blowing ratio within the range of 0.5 to 2 has an obvious influence on the accuracy of superposition prediction. At low blowing ratio, results obtained by superposition method agreed well with the experimental data while the increase of blowing ratio caused a decrease in accuracy. Another significant factor is hole arrangement, results obtained by superposition prediction was nearly the same as experimental values on staggered arrangement plates while it was much higher on in-line arrangement plates. For different hole shapes, the accuracy of superposition prediction on converging-expanding holes was better than cylinder holes and compound angle holes. For both two hole spacing in this paper, prediction results show good agreement with the experiment results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call