Abstract

Goals of modern mechanical ventilation in infants focus on preventing over-distention by limiting tidal volume. Accurate measurement of these volumes is essential. We hypothesized that tidal volume accuracy differs dependent upon the type of airway sensor utilized in tidal volumes less than 10 mL. Intubated, sedated Sprague Dawley rats (n = 40) were ventilated utilizing both control and support ventilator modes. Accuracy of volume delivery was compared between a fixed orifice flow sensor (FOF) and a hot wire anemometer (HWA) to a Hans Rudolph linear pneumotachograph positioned at the patient wye. Rats median weight was 476 grams (range 370-544), tidal volume (V T ) 3.5 mL (1.2-11.4), f 50 (18-102), and PIP 9.5 cm H 2 O (1-34). Across all modes, bias and precision were HWA -0.76, 1.09; FOF 0.22, 0.61. This study confirms that there are differences in the accuracy of small tidal volumes measured with a FOF as compared to a HWA. Utilizing a FOF, control modes exhibit improved precision and decreased bias as compared to support modes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.