Abstract

AbstractWe consider the mapping properties of the integral operator arising in nonlocal slender body theory (SBT) for the model geometry of a straight, periodic filament. It is well known that the classical singular SBT integral operator suffers from high wavenumber instabilities, making it unsuitable for approximating the slender body inverse problem, where the fiber velocity is prescribed and the integral operator must be inverted to find the force density along the fiber. Regularizations of the integral operator must therefore be used instead. Here, we consider two regularization methods: spectral truncation and the ‐regularization of Tornberg and Shelley (2004). We compare the mapping properties of these approximations to the underlying partial differential equation (PDE) solution, which for the inverse problem is simply the Stokes Dirichlet problem with data constrained to be constant on cross sections. For the straight‐but‐periodic fiber with constant radius , we explicitly calculate the spectrum of the operator mapping fiber velocity to force for both the PDE and the approximations. We prove that the spectrum of the original SBT operator agrees closely with the PDE operator at low wavenumbers but differs at high frequencies, allowing us to define a truncated approximation with a wavenumber cutoff . For both the truncated and ‐regularized approximations, we obtain rigorous ‐based convergence to the PDE solution as : A fiber velocity with regularity gives convergence, while a fiber velocity with at least regularity yields convergence. Moreover, we determine the dependence of the ‐regularized error estimate on the regularization parameter .

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call