Abstract
Compactly supported distributions f1,..., fr on ℝd are fefinable if each fi is a finite linear combination of the rescaled and translated distributions fj(Ax−k), where the translates k are taken along a lattice Γ ⊂ ∝d and A is a dilation matrix that expansively maps Γ into itself. Refinable distributions satisfy a refinement equation f(x)=Σk∈Λ ck f(Ax−k), where Λ is a finite subset of Γ, the ck are r×r matrices, and f=(f1,...,fr)T. The accuracy of f is the highest degree p such that all multivariate polynomials q with degree(q)<p are exactly reproduced from linear combinations of translates of f1,...,fr along the lattice Γ. We determine the accuracy p from the matrices ck. Moreover, we determine explicitly the coefficients yα,i(k) such that xα=Σi=1rΣk∈Γyα,i(k) fi(x+k). These coefficients are multivariate polynomials yα,i(x) of degree |α| evaluated at lattice points k∈Γ.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.