Abstract

BackgroundSurface-guided radiation therapy (SGRT) employs a non-invasive real-time optical surface imaging (OSI) technique for patient surface motion monitoring during radiotherapy. The main purpose of this study is to verify the real-time tracking accuracy of SGRT for respiratory motion and provide a fitting method to detect the time delay of gating.MethodsA respiratory motion phantom was utilized to simulate respiratory motion using 17 cosine breathing pattern curves with various periods and amplitudes. The motion tracking of the phantom was performed by the Catalyst™ system. The tracking accuracy of the system (with period and amplitude variations) was evaluated by analyzing the adjusted coefficient of determination (A_R2) and root mean square error (RMSE). Furthermore, 13 actual respiratory curves, which were categorized into regular and irregular patterns, were selected and then simulated by the phantom. The Fourier transform was applied to the respiratory curves, and tracking accuracy was compared through the quantitative analyses of curve similarity using the Pearson correlation coefficient (PCC). In addition, the time delay of amplitude-based respiratory-gating radiotherapy based on the OSI system with various beam hold times was tested using film dosimetry for the Elekta Versa-HD and Varian Edge linacs. A dose convolution-fitting method was provided to accurately measure the beam-on and beam-off time delays.ResultsA_R2 and RMSE for the cosine curves were 0.9990–0.9996 and 0.110–0.241 mm for periods ranging from 1 s to 10 s and 0.9990–0.9994 and 0.059–0.175 mm for amplitudes ranging from 3 mm to 15 mm. The PCC for the actual respiratory curves ranged from 0.9955 to 0.9994, which was not significantly affected by breathing patterns. For gating radiotherapy, the average beam-on and beam-off time delays were 1664 ± 72 and 25 ± 30 ms for Versa-HD and 303 ± 45 and 34 ± 25 ms for Edge, respectively. The time delay was relatively stable as the beam hold time increased.ConclusionsThe OSI technique provides high accuracy for respiratory motion tracking. The proposed dose convolution-fitting method can accurately measure the time delay of respiratory-gating radiotherapy. When the OSI technique is used for respiratory-gating radiotherapy, the time delay for the beam-on is considerably longer than the beam-off.

Highlights

  • Respiratory motion is a major source of target uncertainty in the external radiation treatment of thoracic and abdominal tumors [1,2,3]

  • When the optical surface imaging (OSI) technique is used for respiratory-gating radiotherapy, the time delay for the beam-on is considerably longer than the beam-off

  • We have proposed an accurate mathematical method to measure the time delay of the Versa-HD (Elekta Instrument AB Stockholm, Sweden) and Edge (Varian Medical System, Inc., U.S) linacs in respiratorygating radiotherapy based on the Surface-guided radiation therapy (SGRT) technique

Read more

Summary

Introduction

Respiratory motion is a major source of target uncertainty in the external radiation treatment of thoracic and abdominal tumors [1,2,3]. This results in deviation in dose distributions. The commonly used respiratory management methods in radiation oncology include motion-encompassing methods, respiratory-gating methods, breath-hold methods, forced shallow-breathing with abdominal compression, and respiration-synchronized methods [9]. All such methods require precise tumor localization and tracking using imaging techniques, respiratorygating methods and respiration-synchronized methods. The main purpose of this study is to verify the real-time tracking accuracy of SGRT for respiratory motion and provide a fitting method to detect the time delay of gating

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call