Abstract

BackgroundHeart surgery patients are more at risk of poor peripheral perfusion, and peripheral capillary oxygen saturation (SpO2) measurement is regular care for continuous analysis of blood oxygen saturation in these patients. With regard to controversial studies on accuracy of the current pulse oximetry probes and lack of data related to patients undergoing heart surgery, the present study was conducted to determine accuracy of pulse oximetry probes of finger, toe, forehead and earlobe in detection of oxygen saturation in patients admitted to intensive care units for coronary artery bypass surgery.MethodsIn this clinical trial, 67 patients were recruited based on convenience sampling method among those admitted to intensive care units for coronary artery bypass surgery. The SpO2 value was measured using finger, toe, forehead and earlobe probes and then compared with the standard value of arterial oxygen saturation (SaO2). Data were entered into STATA-11 software and analyzed using descriptive, inferential and Bland-Altman statistical analyses.ResultsHighest and lowest correlational mean values of SpO2 and SaO2 were related to finger and earlobe probes, respectively. The highest and lowest agreement of SpO2 and SaO2 were related to forehead and earlobe probes.ConclusionThe SpO2 of earlobe probes due to lesser mean difference, more limited confidence level and higher agreement ration with SaO2 resulted by arterial blood gas (ABG) analysis had higher accuracy. Thus, it is suggested to use earlobe probes in patients admitted to the intensive care unit for coronary artery bypass surgery.Trial registrationRegistration of this trial protocol has been approved in Iranian Registry of Clinical Trials at 2018–03-19 with reference IRCT20100913004736N22. “Retrospectively registered.”

Highlights

  • Heart surgery patients are more at risk of poor peripheral perfusion, and peripheral capillary oxygen saturation (SpO2) measurement is regular care for continuous analysis of blood oxygen saturation in these patients

  • The results showed that there are no differences between pulse oximetry of forehead and finger in terms of the mentioned times in a general anesthesia, and the authors suggested, the forehead probe can be a proper replacement when it is not possible to use finger probe [16]

  • Considering the limitations and advantages of pulse oximetry in various parts of the body, the importance of accurate detection of hypoxemia and lack of studies about the proper method of pulse oximetry in patients admitted to intensive care units for coronary artery bypass surgery, the present study was conducted to determine the accuracy of pulse oximetry probes of finger, toe, forehead and earlobe in detection of oxygen saturation in the patients admitted to the intensive care unit for coronary artery bypass surgery. In this clinical trial, the study population was the patients admitted to the intensive care unit of Imam Ali (AS) Hospital affiliated to Kermanshah University of Medical Sciences (KUMS) for coronary artery bypass surgery

Read more

Summary

Introduction

Heart surgery patients are more at risk of poor peripheral perfusion, and peripheral capillary oxygen saturation (SpO2) measurement is regular care for continuous analysis of blood oxygen saturation in these patients. With regard to controversial studies on accuracy of the current pulse oximetry probes and lack of data related to patients undergoing heart surgery, the present study was conducted to determine accuracy of pulse oximetry probes of finger, toe, forehead and earlobe in detection of oxygen saturation in patients admitted to intensive care units for coronary artery bypass surgery. Nessler et al (2012) in their study concluded that among the patients under vasopressors, the forehead pulse oximeter sensor had higher accuracy in detection of SpO2 compared to transitional pulse oximetry of fingers [13]. Wilson et al (2010), in a retrospective cohort study, reported the difference of 2.7% between SpO2 and SaO2 in emergency patients with severe sepsis and septic shock and suggested using ABG where there is a need for more accurate detection of SaO2 [1]; the authors suggested doing more investigations due to the limitations of the study such as insufficient sample size

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call