Abstract

ImportanceInfantile nystagmus syndrome (INS) is a group of disorders presenting with genetic and clinical heterogeneities that have challenged the genetic and clinical diagnoses of INS. Precise molecular diagnosis in early infancy may result in more accurate genetic counseling and improved patient management.ObjectiveTo assess the accuracy of genomic data from next-generation sequencing (NGS) and phenotypic data to enhance the definitive diagnosis of INS.Design, Setting, and ParticipantsA single-center retrospective case series was conducted in 48 unrelated, consecutive patients with INS, with or without associated ocular or systemic conditions, who underwent genetic testing between June 1, 2015, and January 31, 2017. Next-generation sequencing analysis was performed using a target panel that included 113 genes associated with INS (n = 47) or a TruSight One sequencing panel that included 4813 genes associated with known human phenotypes (n = 1). Variants were filtered and prioritized by in-depth clinical review, and finally classified according to the American College of Medical Genetics and Genomics guidelines. Patients underwent a detailed ophthalmic examination, including electroretinography and optical coherence tomography, if feasible.Main Outcomes and MeasuresDiagnostic yield of targeted NGS testing.ResultsAmong the 48 patients (21 female and 27 male; mean [SD] age at genetic testing, 9.2 [10.3] years), 8 had a family history of nystagmus and 40 were simplex. All patients were of a single ethnicity (Korean). Genetic variants that were highly likely to be causative were identified in 28 of the 48 patients, corresponding to a molecular diagnostic yield of 58.3% (95% CI, 44.4%-72.2%). FRMD7, GPR143, and PAX6 mutations appeared to be the major genetic causes of familial INS. A total of 10 patients (21%) were reclassified to a different diagnosis based on results of NGS testing, enabling accurate clinical management.Conclusions and RelevanceThese findings suggest that NGS is an accurate diagnostic tool to differentiate causes of INS because diagnostic tests, such as electroretinography and optical coherence tomography, are not easily applicable in young infants. Accurate application of NGS using a standardized, stepwise, team-based approach in early childhood not only facilitated early molecular diagnosis but also led to improved personalized management in patients with INS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.