Abstract

BackgroundExpensive optoelectronic systems, considered the gold standard, require a laboratory environment and the attachment of markers, and they are therefore rarely used in everyday clinical practice. Two-dimensional (2D) human pose estimations for clinical purposes allow kinematic analyses to be carried out via a camera-based smartphone app. Since clinical specialists highly depend on the validity of information, there is a need to evaluate the accuracy of 2D pose estimation apps.ObjectiveThe aim of the study was to investigate the accuracy of the 2D pose estimation of a mobility analysis app (Lindera-v2), using the PanopticStudio Toolbox data set as a reference standard. The study aimed to assess the differences in joint angles obtained by 2D video information generated with the Lindera-v2 algorithm and the reference standard. The results can provide an important assessment of the adequacy of the app for clinical use.MethodsTo evaluate the accuracy of the Lindera-v2 algorithm, 10 video sequences were analyzed. Accuracy was evaluated by assessing a total of 30,000 data pairs for each joint (10 joints in total), comparing the angle data obtained from the Lindera-v2 algorithm with those of the reference standard. The mean differences of the angles were calculated for each joint, and a comparison was made between the estimated values and the reference standard values. Furthermore, the mean absolute error (MAE), root mean square error, and symmetric mean absolute percentage error of the 2D angles were calculated. Agreement between the 2 measurement methods was calculated using the intraclass correlation coefficient (ICC[A,2]). A cross-correlation was calculated for the time series to verify whether there was a temporal shift in the data.ResultsThe mean difference of the Lindera-v2 data in the right hip was the closest to the reference standard, with a mean value difference of –0.05° (SD 6.06°). The greatest difference in comparison with the baseline was found in the neck, with a measurement of –3.07° (SD 6.43°). The MAE of the angle measurement closest to the baseline was observed in the pelvis (1.40°, SD 1.48°). In contrast, the largest MAE was observed in the right shoulder (6.48°, SD 8.43°). The medians of all acquired joints ranged in difference from 0.19° to 3.17° compared with the reference standard. The ICC values ranged from 0.951 (95% CI 0.914-0.969) in the neck to 0.997 (95% CI 0.997-0.997) in the left elbow joint. The cross-correlation showed that the Lindera-v2 algorithm had no temporal lag.ConclusionsThe results of the study indicate that a 2D pose estimation by means of a smartphone app can have excellent agreement compared with a validated reference standard. An assessment of kinematic variables can be performed with the analyzed algorithm, showing only minimal deviations compared with data from a massive multiview system.

Highlights

  • Traditional movement assessments, carried out by experienced physicians, physiotherapists, and occupational therapists, can contain inaccuracies due to subjectivity, despite the clinicians’ expertise

  • The results of the study indicate that a two-dimensional 3D (2D) pose estimation by means of a smartphone app can have excellent agreement compared with a validated reference standard

  • In order to achieve a performance level comparable with the gold standard motion capture systems, this study aimed to evaluate the accuracy of the Lindera-v2 2D pose estimation algorithm, using the PanopticStudio Toolbox (Carnegie Mellon University) [21,22] as a reference standard

Read more

Summary

Introduction

Traditional movement assessments, carried out by experienced physicians, physiotherapists, and occupational therapists, can contain inaccuracies due to subjectivity, despite the clinicians’ expertise. Motion capture systems are used in sports, biomechanics, and rehabilitation, and they focus on gait analysis, injury prevention, and performance improvement [1] These systems are rarely used in everyday clinical practice. Optoelectronic systems require a restricted area, such as a laboratory environment, and the attachment of markers [4], which can be a potential source of measurement error in these systems due to skin movement artifacts [5]. These systems are proving to be very costly. Since clinical specialists highly depend on the validity of information, there is a need to evaluate the accuracy of 2D pose estimation apps

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.