Abstract

BackgroundAdditive manufacturing (AM) is being increasingly used for producing medical models. The accuracy of these models varies between different materials, AM technologies and machine runs. PurposeTo determine the accuracy of selective laser sintering (SLS), three-dimensional printing (3DP) and PolyJet technologies in the production of medical models. Material3D skull models: “original”, “moderate” and “worse”. SLS, 3DP and PolyJet models, and a coordinate measuring machine (CMM). MethodsMeasuring balls designed for measurements were attached to each 3D model. Skull models were manufactured using SLS, 3DP and PolyJet. The midpoints of the balls were determined using CMM. The distances between these points were calculated and compared with the 3D model. ResultsThe dimensional error for the PolyJet was 0.18 ± 0.12% (first measurement) and 0.18 ± 0.13% (second measurement), for SLS 0.79 ± 0.26% (first model) and 0.80 ± 0.32% (second model), and for 3DP 0.67 ± 0.43% (original model, first measurement) and 0.69 ± 0.44% (original model, second measurement), 0.38 ± 0.22% (moderate model) and 0.55 ± 0.37% (worse model). Repeatability of the measurement method was 0.12% for the PolyJet and 0.08% for the 3DP. ConclusionA novel measuring technique was developed and its repeatability was found to be good. The accuracy of the PolyJet was higher when compared with SLS or 3DP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.