Abstract

BackgroundIn the recent years, machine learning algorithms have been more widely and increasingly applied in biomedical fields. In particular, their application has been drawing more attention in the field of psychiatry, for instance, as diagnostic tests/tools for autism spectrum disorder (ASD). However, given their complexity and potential clinical implications, there is an ongoing need for further research on their accuracy.ObjectiveThis study aimed to perform a systematic review and meta-analysis to summarize the available evidence for the accuracy of machine learning algorithms in diagnosing ASD.MethodsThe following databases were searched on November 28, 2018: MEDLINE, EMBASE, CINAHL Complete (with Open Dissertations), PsycINFO, and Institute of Electrical and Electronics Engineers Xplore Digital Library. Studies that used a machine learning algorithm partially or fully for distinguishing individuals with ASD from control subjects and provided accuracy measures were included in our analysis. The bivariate random effects model was applied to the pooled data in a meta-analysis. A subgroup analysis was used to investigate and resolve the source of heterogeneity between studies. True-positive, false-positive, false-negative, and true-negative values from individual studies were used to calculate the pooled sensitivity and specificity values, draw Summary Receiver Operating Characteristics curves, and obtain the area under the curve (AUC) and partial AUC (pAUC).ResultsA total of 43 studies were included for the final analysis, of which a meta-analysis was performed on 40 studies (53 samples with 12,128 participants). A structural magnetic resonance imaging (sMRI) subgroup meta-analysis (12 samples with 1776 participants) showed a sensitivity of 0.83 (95% CI 0.76-0.89), a specificity of 0.84 (95% CI 0.74-0.91), and AUC/pAUC of 0.90/0.83. A functional magnetic resonance imaging/deep neural network subgroup meta-analysis (5 samples with 1345 participants) showed a sensitivity of 0.69 (95% CI 0.62-0.75), specificity of 0.66 (95% CI 0.61-0.70), and AUC/pAUC of 0.71/0.67.ConclusionsThe accuracy of machine learning algorithms for diagnosis of ASD was considered acceptable by few accuracy measures only in cases of sMRI use; however, given the many limitations indicated in our study, further well-designed studies are warranted to extend the potential use of machine learning algorithms to clinical settings.Trial RegistrationPROSPERO CRD42018117779; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=117779

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.