Abstract

To validate the use of key point matrix technology based contactless automatic measurement for evaluation of joint motion of hand. Thirty-three volunteers were enrolled to evaluate the extension and flexion of hand joints between May 2021 and November 2021. There were 20 males and 13 females, the age ranged from 16 to 70 years with an average of 30.2 years. The extension angles of 14 joints of 5 fingers (including hyperextension) and the flexion angles of 12 joints of 4 fingers (excluding thumb) of volunteers were measured by key point matrix technology and manual goniometer, respectively. Then 5 participants and repeated measurement experiment were employed to test the system repeatability and accuracy; 28 participants and paired measurement experiment were employed to test the system accuracy. The average repeatability of finger joint motion measured by the key point matrix technology was 1.801° (extension) and 7.823° (flexion), respectively. Compared with manual measurement, the average differences of each finger joint measured by the key point matrix technology were 3.225° in extension and 14.145° in flexion, respectively. The key point matrix technology based contactless automatic evaluation system offered excellent consistency with the manual goniometers ( ICC=0.875). While most of the consistency with manual goniometer of individual joints were at moderate levels (median of ICC, 0.440). The correlation coefficients between the measurement results of the two methods were mainly positive in the extension of the joint ( P<0.05) and negative in the flexion of the joints ( P<0.05). The key point matrix technology based contactless automatic evaluation provides sufficient measurement repeatability and accuracy in evaluation for the joint motion of hand.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.