Abstract

To assess the accuracy of intraocular lens power calculation formulas Barrett Universal II (BUII), Hill-Radial Basis Function (RBF) 3.0, Kane, Ladas Super Formula (LSF), Haigis, Hoffer Q, and SRK/T in primary angle-closure disease (PACD). A total of 129 PACD eyes were enrolled. Prediction refraction was calculated for each formula and compared with actual refraction. Accuracy was determined by formula performance index (FPI), median absolute error (MedAE) and percentage of eyes with a prediction error (PE) within ± 0.50D. Subgroup analysis was performed according to axial length (AL). Overall, FPI was ranked as follows: Kane (0.067), RBF 3.0 (0.064), Haigis (0.062), SRK/T (0.060), BUII (0.058), Hoffer Q (0.055), and LSF (0.049). Kane got the highest (71.3%) percentage of eyes with PE within ± 0.50 D. In medium AL eyes (22mm < AL ≤ 25mm), FPI ranked the same as in total group. MedAEs were equal across all formulas (P = 0.121). In short eyes (AL ≤ 22mm), FPI was Kane (0.055), RBF 3.0 (0.050), SRK/T (0.050), Haigis (0.049), BUII (0.047), Hoffer Q (0.045), and LSF (0.033). MedAEs were significantly different across all formulas (P = 0.033). Haigis showed the lowest MedAE (0.35 D), Haigis and Kane got the highest percentage (63.6%) of eyes with PE within ± 0.50 D. Kane outperformed in total PACD eyes; RBF 3.0, Haigis, and SRK/T achieved satisfying performance. When dealing with PACD eyes shorter than 22mm, Kane achieved the best accuracy. RBF 3.0, SRK/T, Haigis, and BUII achieved comparable outcomes. No formula showed superiority over others for medium AL PACD eyes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call