Abstract

Inertial motion sensors (IMSs) combine three sensors to produce a reportedly stable and accurate orientation estimate in three dimensions. Although accuracy has been reported within the range of 2 deg of error by manufacturers, the sensors are rarely tested in the challenging motion present in human motion. Their accuracy was tested in static, quasistatic, and dynamic situations against gold-standard Vicon camera data. It was found that static and quasistatic rms error was even less than manufacturers' technical specifications. Quasistatic rms error was minimal at 0.3 deg (+/-0.15 deg SD) on the roll axis, 0.29 deg (+/-0.20 deg SD) on the pitch axis, and 0.73 deg (+/-0.81 deg SD) on the yaw axis. The dynamic rms error was between 1.9 deg and 3.5 deg on the main axes of motion but it increased considerably on off-axis during planar pendulum motion. Complex arm motion in the forward reaching plane proved to be a greater challenge for the sensors to track but results are arguably better than previously reported studies considering the large range of motion used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.