Abstract

In the present study, we used the airborne E-SAR radar to simulate the satellite-borne high-resolution TerraSAR radar data and determined the accuracy of the plot-level forest variable estimates produced. Estimation was carried out using the nonparametric k-nearest neighbour (k-nn) method. Variables studied included mean volume, tree species-specific volumes and their proportions of total volume, basal area, mean height and mean diameter. E-SAR-based estimates were compared with those obtained using aerial photographs and medium-resolution satellite image (Landsat ETM+) recording optical wavelength energy. The study area was located in Kirkkonummi, southern Finland. The relative RMSEs for ESAR were 45%, 29%, 28% and 38% for mean volume, mean diameter, mean height and basal area, respectively. For aerial photographs these were 51%, 26%, 27% and 42%, and for Landsat ETM+ images 58%, 40%, 35% and 49%. Combined datasets outperformed all single-source datasets, with relative RMSEs of 26%, 23%, 33% and 39%. Of the single-source datasets, the E-SAR images were well suited for estimating mean volume, while for mean diameter, mean height and basal area the E-SAR and aerial photographs performed similarly and far better than Landsat ETM+. The aerial photographs succeeded well in the estimation of species-specific volumes and their proportions, but the combined dataset was still significantly better in volume proportions. Due to its good temporal resolution, satellite-borne radar imaging is a promising data source for forest inventories, both in large-area forest inventories and operative forest management planning. Future high-resolution synthetic aperture radar (SAR) images could be combined with airborne laser scanner data when estimating forest or even tree characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call