Abstract
AbstractIn standard finite element simulations of groundwater flow the correspondence between hydraulic head gradients and groundwater fluxes is represented by the stiffness matrix. In two‐dimensional problems the use of linear triangular elements on Delaunay triangulations guarantees a stiffness matrix of type M. This implies that the local numerical fluxes are physically consistent with Darcy's law. This condition is fundamental to avoid the occurrence of local maxima or minima, and is of crucial importance when the calculated flow field is used in contaminant transport simulations or pathline evaluation. In three spatial dimensions, the linear Galerkin approach on tetrahedra does not lead to M‐matrices even on Delaunay meshes. By interpretation of the Galerkin approach as a subdomain collocation scheme, we develop a new approach (OSC, orthogonal subdomain collocation) that is shown to produce M‐matrices in three‐dimensional Delaunay triangulations. In case of heterogeneous and anisotropic coefficients, extra mesh properties required for M‐stiffness matrices will also be discussed. Copyright © 2001 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical Methods in Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.