Abstract
Most software for language analysis has relied on an interaction between the metalinguistic skills of a human coder and the calculating ability of the machine to produce reliable results. However, probabilistic parsing algorithms are now capable of highly accurate and completely automatic identification of grammatical word classes. The program Computerized Profiling combines a probabilistic parser with modules customized to produce four clinical grammatical analyses: MLU, LARSP, IPSyn, and DSS. The accuracy of these analyses was assessed on 69 language samples from typically developing, speech-impaired, and language-impaired children, 2 years 6 months to 7 years 10 months. Values obtained with human coding and by the software alone were compared. Results for all four analyses produced automatically were comparable to published data on the manual interrater reliability of these procedures. Clinical decisions based on cutoff scores and productivity data were little affected by the use of automatic rather than human-generated analyses. These findings bode well for future clinical and research use of automatic language analysis software.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.