Abstract

Type Ia Supernovae (SNe Ia) are standardizable candles that allow us to measure the recent expansion rate of the Universe. Due to uncertainties in progenitor physics, potential astrophysical dependencies may bias cosmological measurements if not properly accounted for. The dependency of the intrinsic luminosity of SNe Ia with their host-galaxy environment is often used to standardize SNe Ia luminosity and is commonly parameterized as a step function. This functional form implicitly assumes two-populations of SNe Ia. In the literature, multiple environmental indicators have been considered, finding different, sometimes incompatible, step function amplitudes. We compare these indicators in the context of a two-populations model, based on their ability to distinguish the two populations. We show that local H$\alpha$-based specific star formation rate (lsSFR) and global stellar mass are better tracers than, for instance, host galaxy morphology. We show that tracer accuracy can explain the discrepancy between the observed SNe Ia step amplitudes found in the literature. Using lsSFR or global mass to distinguish the two populations can explain all other observations, though lsSFR is favoured. As lsSFR is strongly connected to age, our results favour a prompt and delayed population model. In any case, there exists two populations that differ in standardized magnitude by at least $0.121\pm0.010\,\mathrm{mag}$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.