Abstract

Introduction: The purpose of this study was to compare and contrast the accuracy of endodontic access cavities created using an augmented reality appliance to those performed using the conventional technique. Materials and Methods: 60 single-rooted anterior teeth were chosen for study and randomly divided between two study groups: Group A—endodontic access cavities created using an augmented reality appliance as a guide (n = 30) (AR); and Group B—endodontic access cavities performed with the manual (freehand) technique (n = 30) (MN). A 3D implant planning software was used to plan the endodontic access cavities for the AR group, with a cone-beam computed tomography (CBCT) and 3D intraoral surface scan taken preoperatively and subsequently transferred to the augmented reality device. A second CBCT scan was taken after performing the endodontic access cavities to compare the planned and performed endodontic access for accuracy. Therapeutic planning software and Student’s t-test were used to analyze the cavities at the apical, coronal, and angular levels. The repeatability and reproducibility of the digital measurement technique were analyzed using Gage R&R statistical analysis. Results: The paired t-test found statistically significant differences between the study groups at the coronal (p = 0.0029) and apical (p = 0.0063) levels; no statistically significant differences were found between the AR and MN groups at the angular (p = 0.6596) level. Conclusions: Augmented reality devices enable the safer and more accurate performance of endodontic access cavities when compared with the conventional freehand technique.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call