Abstract

BackgroundThe linear-envelope peak (LEP) of surface EMG signal is widely used in gait analysis to characterize muscular activity, especially in clinics. Research questionThis study is designed to evaluate LEP accuracy in identifying muscular activation and assessing activation timing during walking. MethodsSurface EMG signals from gastrocnemius lateralis (GL) and tibialis anterior (TA) were analyzed in 100 strides per subject (31 healthy subjects) during ground walking. Signals were full-wave rectified and low-pass filtered (cut-off frequency=5 Hz) to extract the linear envelope. LEP accuracy in identifying muscle activations and the associated error in peak detection were assessed by direct comparison with a reference method based on wavelet transform. LEP accuracy in identifying the timing of higher signalenergy levels was also assessed, increasing the reference-algorithm selectivity. ResultsThe detection error (percentage number of times when LEP falls outside the correspondent reference activation interval) is close to zero. Detection error increases up to 70% for intervals including only signal energy higher than 90% of energy peak. Mean absolute error (MAE, the absolute value of the distance between LEP timing and the correspondent actual timing of the sEMG-signal peak computed by reference algorithm) is 54.1±20.0 ms. Detection error and MAE are significantly higher (p<0.05) in TA data compared to GL signals. Differences among MAE values detected adopting different values for LE cut-off frequency are not statistically significant. SignificanceLEP was found to be accurate in identifying the number of muscle activations during walking. However, the use of LEP to assess the timing of highest sEMG-signal energy (signal peak) should be considered carefully. Indeed, it could introduce a relevant inaccuracy in muscle-activation identification and peak-timing quantification. The type of muscle to analyze could also influence LEP performances, while the cut-off frequency chosen for envelope extraction appears to have a limited impact.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call