Abstract

AbstractThis paper explores the influence of flight altitude, terrain morphology, and the number of ground control points (GCPs) on digital surface model (DSM) and orthoimage accuracies obtained with unmanned aerial vehicle (UAV) photogrammetry. For this study, 60 photogrammetric projects were carried out considering five terrain morphologies, four flight altitudes (i.e., 50, 80, 100, and 120 m), and three different numbers of GCPs (i.e., 3, 5, and 10). The UAV was a rotatory wing platform with eight motors, and the sensor was a nonmetric mirrorless reflex camera. The root-mean-square error (RMSE) was used to assess the accuracy of the DSM (Z component) and orthophotos (X, Y, and XY components RMSEX, RMSEY, and RMSEXY, respectively). The results show that RMSEX, RMSEY, and RMSEXY were not influenced by flight altitude or terrain morphology. For horizontal accuracy, differences between terrain morphologies were observed only when 5 or 10 GCPs were used, which were the best accuracies for the flattest morph...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call