Abstract

This in vitro study evaluated the dimensional accuracy of three 3D printers and one milling machine with their respective polymeric materials using a simplified geometrical model. A simplified computer-aided design (CAD) model was created. The test samples were fabricated with three 3D printers: a dental desktop stereolithography (SLA) printer, an industrial SLA printer, and an industrial fused deposition modeling (FDM) printer, as well as a 5-axis milling machine. One polymer material was used per industrial printer and milling machine while two materials were used with the dental printer for a total of five study groups. Test specimens were then digitized using a laboratory scanner. The virtual outer caliper method was used to measure the linear dimensions of the digitized 3D printed and milled specimens in x-, y-, and z-axes, and compare them to the known values of the CAD model. Data were analyzed with Kruskal-Wallis one-way ANOVA on Ranks followed by the Tukey's test. Milled specimens were not significantly different from the CAD model in any dimension (p > 0.05). All 3D printed specimens were significantly different from the CAD model in all dimensions (p = 0.01), except the dental SLA 3D printer with one of the polymers tested (Bis-GMA) which was not significantly different in two (x and z) dimensions (p = 0.4 and p = 0.12). The milling technology tested provided greater dimensional accuracy than the selected 3D printing. Printer, printing technology, and material selection affected the accuracy of the printed model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call